WO3 nanoflakes for enhanced photoelectrochemical conversion.

We developed a postgrowth modification method of two-dimensional WO3 nanoflakes by a simultaneous solution etching and reducing process in a weakly acidic condition. The obtained dual etched and reduced WO3 nanoflakes have a much rougher surface, in which oxygen vacancies are created during the simultaneous etching/reducing process for optimized photoelectrochemical performance. The obtained photoanodes show an enhanced photocurrent density of ∼1.10 mA/cm2 at 1.0 V vs Ag/AgCl (∼1.23 V vs reversible hydrogen electrode), compared to 0.62 mA/cm2 of pristine WO3 nanoflakes. The electrochemical impedance spectroscopy measurement and the density functional theory calculation demonstrate that this improved performance of dual etched and reduced WO3 nanoflakes is attributed to the increase of charge carrier density as a result of the synergetic effect of etching and reducing.

Link